Implicit-explicit schemes based on strong stability preserving time discretisations

نویسنده

  • Thor Gjesdal
چکیده

In this note we propose and analyze an implicit-explicit scheme based on second order strong stability preserving time discretisations. We also present some theoretical and numerical stability results for second order Runge Kutta IMEX schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ju n 20 06 Implicit - explicit methods based on strong stability preserving multistep time discretizations ⋆

In this note we propose and analyze novel implicit-explicit methods based on second order strong stability preserving multistep time discretizations. Several schemes are developed, and a linear stability analysis is performed to study their properties with respect to the implicit and explicit eigenvalues. One of the proposed schemes is found to have very good stability properties, with implicit...

متن کامل

Implicit - explicit methods based on strong stability preserving multistep time discretizations ⋆ Thor

In this note we propose and analyze novel implicit-explicit methods based on second order strong stability preserving multistep time discretizations. Several schemes are developed, and a linear stability analysis is performed to study their properties with respect to the implicit and explicit eigenvalues. One of the proposed schemes is found to have very good stability properties, with implicit...

متن کامل

High-accuracy alternating segment explicit-implicit method for the fourth-order heat equation

Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...

متن کامل

-Stable Nonstandard Finite Differences for Anisotropic Diffusion

Anisotropic diffusion filters with a diffusion tensor are successfully used in many image processing and computer vision applications, ranging from image denoising over compression to optic flow computation. However, finding adequate numerical schemes is difficult: Implementations may suffer from dissipative artifacts, poor approximation of rotation invariance, and they may lack provable stabil...

متن کامل

Implicit-explicit Runge-kutta Schemes for Stiff Systems of Differential Equations

We present new implicit-explicit (IMEX) Runge Kutta methods suitable for time dependent partial differential systems which contain stiff and non stiff terms (i.e. convection-diffusion problems, hyperbolic systems with relaxation). Here we restrict to diagonally implicit schemes and emphasize the relation with splitting schemes and asymptotic preserving schemes. Accuracy and stability properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003